Scalable Core–Shell MoS 2 /Sb 2 Se 3 Nanorod Array Photocathodes for Enhanced Photoelectrochemical Water Splitting

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution

The development of low cost, scalable, renewable energy technologies is one of today’s most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separa...

متن کامل

Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting.

Semiconductor nanowires (NWs) are useful building blocks in optoelectronic, sensing, and energy devices and one-dimensional NWs have been used in photoelectrochemical (PEC) water splitting because of the enhanced light absorption and charge transport. It has been theoretically predicted that the {001} facets of body center cubic (bcc) In2O3 nanocrystals can effectively accumulate photogenerated...

متن کامل

Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.

We report the template-free synthesis of Ta3N5 nanorod array films grown on Ta foil by a combination of a vapor-phase hydrothermal process and subsequent nitriding. The Ta3N5 nanorod array film modified with Co(OH)x when used as a photoanode in a photoelectrochemical cell for water splitting yields a stable photocurrent density of 2.8 mA cm(-2) at 1.23 VRHE under AM 1.5G simulated sunlight. The...

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

Controllable reduced black titania with enhanced photoelectrochemical water splitting performance.

Black titania prepared by metal-reduction methods is systematically studied and found the best controllable Mg-reduction method. Colored titania products from white, light blue, dark blue, to black were obtained with a crystalline/amorphous core-shell structure. The black titania shows a five times higher H2 production rate in photoelectrochemical (PEC) water splitting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Solar RRL

سال: 2019

ISSN: 2367-198X,2367-198X

DOI: 10.1002/solr.201900442